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Abstract

The surge in Internet of Things (10T) devices and their diverse applications
generates massive data volumes requiring substantial processing power,
demanding efficient scientific workflow execution across resource-
constrained edge devices, fog nodes, and the cloud. Efficiently matching
workflow tasks with resources is crucial for minimizing total completion time
(makespan), energy consumption, and cost, particularly in delay-sensitive
applications. However, achieving this optimal allocation remains a
challenge. To tackle this challenge, we introduce a novel multi-objective
Improved Particle Swarm Optimization (IPSO) algorithm. We evaluate the
performance of the IPSO algorithm against standard PSO. IPSO's
effectiveness is assessed through simulations employing the Montage
scientific workflow and a varying number of tasks, scaling up to 500.
Simulations demonstrate that IPSO outperforms PSO in minimizing
completion time (makespan), energy consumption, and total cost. This
advantage becomes more pronounced as the number of tasks in the workflow
increases, suggesting IPSO's efficacy in handling larger and more complex
scientific workflows. For instance, with 500 tasks, IPSO demonstrably
reduced makespan, energy consumption, and total cost compared to PSO by
15.11%, 24.02%, and 1.42%, respectively.
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1. Introduction

The Internet of Things (10T) era has caused in an increase of resource-constrained devices generating real-time data.
Cloud computing, while adept at handling large-scale data processing, struggles with the latency and bandwidth demands
of these applications [1]. Fog computing bridges this gap by providing a distributed computing layer at the network's edge.
This facilitates real-time processing closer to data sources, fostering efficient management of delay-sensitive tasks in the
IoT tier. User demands differ between cloud and fog nodes depending on job performance metrics as edge-cloud adoption
increases, necessitating processing to satisfy user needs [2]. It's important to talk to the differences between fog and cloud
computing, as well as erratic user requests, resource constraints, and challenging task offloading and scheduling.
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System performance is greatly affected by offloading tasks that are accomplished by minimizing network overhead,
maximizing reducing power consumption, and resource utilization [3]. Optimizing resource allocation, offloading, and task
scheduling within this combined loT-cloud-fog environment presents a significant challenge. These involve assigning tasks
to the most suitable resources, ensuring they are completed while meeting quality of service (QoS) requirements [4].
However, the dynamic nature of the environment, along with varying task configurations and resource demands, pose
challenges to task scheduling [5]. These factors make it difficult to optimize QoS, requiring adjustments and careful
selection of cloud and fog resources. The primary goal of optimization in task scheduling is to find the best possible solution
that can be suitable for performance metrics like delay, energy consumption, total completion time (makespan), and cost.
Nondeterministic polynomial (NP) completion is the standard for scheduling. To approximate optimal solutions, it
therefore makes use of meta-heuristic algorithms, which frequently involve randomized search techniques [6]. Optimizing
resource allocation and task scheduling within this combined loT-cloud-fog environment presents a significant challenge.
Many scheduling workflow population-based algorithms emerge as a compelling technique for tackling this issue as PSO,
Genetic algorithm (GA), Ant Colony Optimization (ACO), and Simulated Annealing (SA) [7].

In many loT applications, tasks are organized as workflows. A workflow consists of interdependent tasks that need
to be carried out in a particular order and with specific priorities [8]. In this context, task scheduling is represented as a
directed acyclic graph (DAG), where each node symbolizes a task and its weight reflects the task's runtime or computational
cost. The edges of the graph illustrate the prerequisite relationships between tasks [8, 9], thereby shaping the workflow.
The goal may involve minimizing cost, energy consumption, storage space usage, data transfer time, overall runtime, or a
combination of these factors.

According to a recent comprehensive study on QoS requirements in workflow scheduling approaches, PSO based
optimization [10], [11], [12] is the most widely used strategy due to its simplicity. However, the PSO algorithm can become
trapped in local optima, hindering its effectiveness. This paper proposes a modification to address this issue, creating multi-
objective IPSO specifically suited for three-tier 1oT-cloud-fog environment illustrated in Fig. 1. The main idea of this work
is inspired by the method presented in [11] but it extended it to fog-cloud computing instead fog computing only. The IPSO
employs a linearly decreasing inertia weight, which enables particles to extensively explore the search space during the
initial stages. This broad exploration increases the likelihood of discovering promising regions that may contain the optimal
solution. As time progresses and the inertia weight decreases linearly, the range of exploration for the particles gradually
contracts. This narrowing of the search range focuses the particles on exploiting the identified promising region, leading
to faster convergence towards the optimal solution. Multi-objective IPSO is designed to tackle problems with multiple,
conflicting objectives. It aims to identify a set of solutions that represent the best trade-offs between these objectives.

The efficacy of this approach is demonstrated by a comparative study of multi-objective IPSO and PSO scheduling
algorithms with an increase in the number of tasks and based on performance parameters including makespan, energy
consumption, and cost. Because the newly created method has a considerable impact on improving user satisfaction and
computing resource productivity, it emphasizes minimizing the summation of makespan, energy consumption, and total
cost as the objective function. FogWorkflowSim is used to implement this work [13]. The paper's remaining sections are
organized as follows: Section 2 reviews studies on offloading and task scheduling algorithms. Section 3 elaborates on the
scheduling of workflows and performance metrics. Section 4 explains the concept of workflow and the proposed method.
Section 5 discusses the experimental outcomes. Finally, Section 6 presents the research’s conclusion.
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Fig. 1 IoT- Fog-Cloud Structure.
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2. Related work

This review examines recent research on offloading and scheduling tasks within cloud-fog computing environments.
It emphasizes the key algorithms and approaches used for this function. In response to the difficulties of large-scale task
scheduling, a new real-time randomized algorithm is presented. This algorithm utilizes the Power of Two Choices (Po2C)
method to strike a balance between better Quality of Service (QoS) and lower costs [1].

In a three-tiered framework, Stavrinides et al. [14] introduced the hybrid fog with a cloud-aware heuristic called
Hybrid-EDF for the dynamic scenarios of many basic l0T operations. The scheduling process in our system takes into
account the cost of connectivity when transferring data from loT-level sensors and devices to virtual computers in the fog
layer. Because cloud resources are being used, there is a significant financial cost involved.

A cloud-fog computing system that combines cloud nodes that are managed by a fog provider with cloud nodes that
are rented from cloud services was described by Pham et al. [15]. To get the most out of the cloud-fog computing system,
it is imperative to strategically divide computing workloads among the processing nodes of each tier. The recommended
scheduling technique lowers the cost of using cloud resources while ensuring program execution speed. The budget of the
fog supplier and the deadline for finishing a workflow are two other constraints that need to be taken into account in order
to support the suggested scheme approach. Kabirzadeh et al. [16] suggested a hyper-heuristic method for handling the
workflow scheduling problem in a fog computing environment. This study offered a test-and-special rule-based approach.

Tychalas and Karatza [17] presented a dynamic probabilistic load balancing method by expanding on the weighted
round-robin algorithm. Using important server metrics to gauge their present level of activity, together with their processing
capacity, this strategy assigns probability to available resources.

Subramoney and Nyirenda [10] used the well-known PSO for workflow scheduling to compare cloud and fog-cloud
collaboration. Three important elements are taken into account in the provided weighted objective function: cost,
makespan, and energy usage. Furthermore, they simulate cloud and cloud-fog systems using the newly created
FogWorkflowSim. A comparative evaluation of population-based approaches for process job scheduling in loT-fog-cloud
systems was put out by Subramoney and Nyirenda [18]. In comparison to standard PSO, IPSO offers several advantages.
By gradually reducing the inertia weight over iterations, it promotes a balance between exploration and exploitation. This
enables the algorithm to efficiently explore the search space early on and then focus on refining promising solutions. As a
result, IPSO often achieves faster convergence, better solution quality, and improved adaptability to different problem
instances compared to standard PSO.

In order to minimize costs and makespan, Ali et al. [19] proposed a task scheduling strategy based on the Multi-
objective Optimization Problem (MOP). This method assigns jobs to fog or cloud devices automatically by utilizing a
model that incorporates Discrete Non-dominated Sorting Genetic Algorithm Il (DNSGA-II). The burden is efficiently
divided between cloud and fog nodes by the model.

Wu et al. [20] demonstrated the effective scheduling strategy used by heterogeneous fog computing systems to
reduce power consumption for IOT applications. During the first stages of construction, an integer linear programming
technique is applied in an attempt to lower the total energy consumption. The integer linear programming approach looks
for key variables that can be changed to reduce energy consumption in a distributed system, as opposed to using them
directly for calculation. It is believed that energy is the only goal.

The Budget-Aware Scheduling (BAS) method was proposed by Yadav et al. [21] as a solution to the cloud makespan
and cost trade-off for sequencing applications. The method is centered on planning applications according to a timeline to
guarantee that they are executed on time, which lowers the costs associated with using cloud resources. Its goal is to
improve the use of resources.

Using a PSO technique based on fuzzy resource usage in process scheduling, Farid et al. [22] addressed the Multi-
objective Optimization Problem (MOP). As long as dependability limitations are met, the goal is to minimize costs and
makespan. Furthermore, the study takes into account the location of job execution as well as the order of data transfer.

To improve the scheduling of scientific work in 1oT-cloud-fog systems, Subramoney and Nyirenda [23] devised a
technique called multi-swarm particle swarm optimization (MS-PSQ), which solves the premature convergence problem
of traditional PSO.

G.singh et al. [24] proposed a hybrid algorithm that combines Modified Particle Swarm Optimization (MPSO) with
Genetic Algorithm (GA) to address workflow scheduling in a cloud-fog computing environment. The aim is to achieve
multi-objective optimization, focusing on enhancing the efficiency and performance of task scheduling by considering
multiple objectives such as minimizing makespan, energy consumption, and cost.

Three offloading solutions were introduced by M Gamal et al. [25] with a focus on real-time applications and
intended for use in loT-fog-cloud contexts. When it comes to low latency jobs, LCO works best. Energy efficiency and
computationally demanding jobs are given priority by EBO. By optimizing resource utilization, EO seeks to achieve a
balance between latency and energy consumption.

3. Offloading and scheduling for workflow

A scientific workflow in a fog-cloud environment leverages the advantages of both fog and cloud computing to
handle intricate scientific tasks. This workflow represents a scientific experiment as a sequence of steps, with each step
either processing data or conducting a specific analysis in an automated manner. It breaks down the experiment into stages
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and specifies the order in which they need to be executed. Offloading and task scheduling are two sides of the same coin
when it comes to managing tasks in an loT-fog-cloud environment. Offloading and task scheduling are both strategies used
to optimize the performance and efficiency of computing systems, but they address different aspects of this optimization.
Offloading refers to the process of transferring tasks or computations from one system or component to another. This is
often done to leverage the strengths of different systems or to balance the workload. Task scheduling involves determining
the order and allocation of tasks to be executed on resources over time. It ensures that tasks are processed in an efficient
and timely manner.

3.1 The concept of a workflow

The concept of a workflow is illustrated using a Directed Acyclic Graph (DAG), denoted as G = (T, E), where T
represents vertices corresponding to tasks, labeled from t; to tn, and E denotes the edges that represent task dependencies.
Each edge signifies data flow between tasks, written as dij=<t;, tj > € E, where d;; represents the size of the output data
from task t; to task tj. Task t; starts execution only after task t; has been completed. A task t; with no predecessor is classified
as a starting task, while a task t; with no successor is classified as an ending task. For example, Fig. 2 demonstrates a
workflow with nine tasks. Tasks on the same level (aligned horizontally) can be executed simultaneously, such as tasks t»,
ts, and ts, which can run in parallel.

In an loT-cloud-fog environment, the process of offloading and scheduling a workflow involves distributing tasks
across different computing resources, each with its own distinct characteristics. The aim is to optimize workflow execution
by reducing three key factors: total completion time (makespan), energy consumption, and overall cost.

3.2 Performance parameters

This setup involves three main categories of computational resources: end devices, fog servers, and cloud servers.
These categories include processing and storage capabilities, as well as bandwidth, memory, and power requirements. In
the fog and cloud segments, computational resources are represented by virtual machines (VMs). End devices are included
because certain minor tasks are more efficiently handled locally due to economic and resource efficiency, rather than being
offloaded to fog and cloud servers.

The research centers on a key optimization goal: determining the most effective strategy for task offloading and
resource selection to minimize three objectives: cost, makespan, and energy consumption.

3.2.1 Makespan
The workflow makespan, which represents the total time needed to complete the entire workflow successfully, is
calculated using the following formula:

MS=max{FT,;, tic T}-min{ST; ticT} (1)

Where, inside a specified workflow, STy represents the task's start time and FTy its finish time.

3.2.2 Energy consumption
Idle and active components, denoted as Eiqe and Eaciive, respectively, are used to determine energy usage [26]. The
first one is the energy used when the resource is idle, and the second is the energy used while the task is being executed.
The following formula is used to determine the energy used during the idle period [10, 26]:

Eiate :Z;n=1 Zidlei,keIDLEi,k a fminj Vzminj Lj,ks (2)

Where idle; corresponds to a collection of periods of idle slot k on resource j, and fin j represents the frequency
along with Vmin j denoting the minimum voltage for resource j, respectively. Ljx represents the duration of the idle time for
idleix. Therefore, the active energy is determined by.

Eoctive = Zlnzl af; Vzi (FTy; — STy, (3)

Where o represents a fixed number, while f; and V;represent the frequency and supply voltage of the task i executed
resource. When the resource is in an idle state, it enters sleep mode, characterized by the lowest voltage supply and a
relative frequency. The overall energy consumption (TE) across the loT-cloud-fog system entire workflow during the
execution is given by:

TE = Egctive + Eiate- (4)
3.2.3 Cost
This includes the costs associated with computation and communication. All three categories of computing

resources have associated costs. On the other hand, communication expenses are not incurred when tasks are completed
on the end device. The following is an outline of the computational cost [26] related to using resources to compute r.

CE[ = pr.(FTy; — STy;). (5)
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where pr stands for the cost of processing a unit. The communication cost, which is the cost of data transmission
for transferring a task's output of dimension d;, ; from the resource that is performing task i to the resource that is assigned
to handle job j, is determined by:
CCi,j = tTCi'j . di,j! (6)
In this case, the cost of individual communication between the resource assigned to job j and the resource chosen
for task i is denoted as trci;. If both jobs are completed on the same resource, then trcij= 0. As a result, the total cost TC
for a situation with n tasks and m computational resources can be written as follows:

TC = Z?ZI 27:1 CCi,j + Z?:1 Z?=1 CEir- (7)

This This study emphasizes minimizing the sum weighted objective function, which is a valuable tool for task
scheduling in fog-cloud environments. It allows for scheduling decisions that consider multiple, often competing,
objectives, leading to more efficient and practical results. Therefore, the objective function is defined as follow:

F(p) = Wl.M5+W2 . TE + W3 . TC (8)

Where p presents the assignment of a workflow's n tasks to the m available computing resources. In PSO
terminology, p is known as a particle. The coefficient weights w1, wz, and w3 represent the degree of importance assigned
to each objective. Equal weights are applied in the performance evaluations to ensure that each objective contributes
equally, with wi=w2=w3=0.2.

4. Proposed method

Kennedy and Eberhart [27] introduced PSO, a computational technique for solving optimization issues, and IPSO
is an extension of PSO. PSO models the collective behavior of individual particles in a swarm, inspired by the social
dynamics of fish aggregating or birds soaring. The swarm collectively searches the solution space to discover the optimal
solution, with each particle representing a potential solution to the optimization problem. PSO is straightforward, easy to
comprehend, and reasonably simple to use. Nevertheless, because of its constant inertia weight, it has an early convergence
problem. Thus, multi objective IPSO is proposed to overcome this issue by decreasing weight linearly and dynamically by
using a weight that starts high and decreases linearly over time.

4.1 Particle representation

This section explains the particle denoted by "p," which is part of the objective function in Eq. (8), before discussing
the rationale behind the proposed IPSO. In this study, tasks within workflows can be executed either at the source (end
device), a cloud VM, or a fog VM. End devices do not delegate their tasks to other end devices; they can only assign tasks
to cloud and fog resources. Therefore, when scheduling workflows, only a single representative end device is included in
the encoding process. Since scheduling tasks in a cloud-fog environment is inherently discrete, natural numbers are used
to encode individuals for the proposed IPSO algorithm. Particles represent mappings between tasks and the resources on
which they'll be executed. Each particle, denoted as "p," is a one-dimensional vector with a length equal to the total number
of tasks (T) in the workflow. Each element (position) within this vector indicates the specific VM assigned to a particular
task. The value at each position is an integer ranging from 1 to R, where R represents the total number of available resources
in the FogWorkflowSim environment.

For example, imagine Fig. 3 depicts a workflow with T=9 tasks that need to be mapped to an loT-cloud-fog
environment with R=6 available resources (including 3 cloud VMs, 2 fog VMs, and 1 end device VM). In this scenario,
the particlep={5,2,1, 4, 3,6, 1, 6, 4} represents a potential mapping solution. Each value in the particle vector corresponds
to a task, and the value itself indicates the assigned VM (between 1 and 6) for that specific task.
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4.2 Multi-objective IPSO for scheduling of workflow

IPSO is an optimization method used in scientific workflow scheduling. It aims to identify the most efficient
allocation of tasks to available computing resources. This efficiency is typically measured by minimizing the overall
fitness function, also known as a summation of weighted makespan, total cost, and average energy consumption of the
entire workflow.

In IPSO, a population of individuals is represented by particles; using the solution space as a guide, they move
through it using their existing positions x¥ and velocities v¥; for the kth number of iterations. Each particle's quality is
evaluated using a predefined fitness function tailored to the specific optimization problem. Each particle's movement is
influenced by its own best-known position, pBesti, as well as the best-known global position, gBest, of the entire swarm.
This iterative process directs the swarm toward the optimal solution. The flowchart of IPSO is declared in Fig. 4. The
stages of the IPSO algorithm are as follows:

1. Initialize IPSO parameters like the number of particles (N), search space boundaries, minimal and maximal
inertia weight, learning factors, and maximum iterations (G).
2. Randomly set the initial positions and velocities of the particles within the search space.
3. Begin calculating the value of the fitness function for each particle in the swarm by sum weighted objective
function using Eg. (8).
4. For each particle, update its personal best position (pBest) if the current position has a better fitness score.
Identify the particle with the best fitness (gBest) in the entire swarm.
6. Do for each iteration the following:
» Decrease the inertia weight (w) linearly from its maximal value (wbegin) to a minimal (wend) as:

o

tmax-t
w' = Weng + (wbegin - wend) X tman (9)
» Update each particle's velocity by considering its current velocity, the difference between its position
and both pBest/gBest, and the new inertia weight as follows:

vF*l = wvF + ¢y (pBest; — XF) +
c,r, (gBest; — X[) (10)
» Update each particle's position by adding its current velocity to its position as follows:
xf = xF 4+ vk (11)

» Calculate the fitness of the particles' positions after updating their locations. If a particle's new
position has a better fitness value, update its pBest.

»  Check if the maximum number of iterations has been reached.

» If the termination condition is satisfied, exit the loop and return the best solution (the schedule).

In Due to its simplicity, the Socio-Cognitively Inspired standard PSO [10] is used in this work. However, it suffers
from premature convergence. To address this, the technique involves discretizing each dimension variable into integers
from the fog server set p= {1, 2, ...., n}to schedule particle positions, as discussed in the previous subsection. This
approach aligns particle positions with task scheduling. Additionally, the weight o is decreased linearly over iterations,
starting high and reducing gradually. This adjustment helps fine-tune the particles' search behavior throughout the
optimization process, ensuring continued exploration of the search space and mitigating premature convergence.

In comparison to standard PSO with a fixed weight, IPSO provides a better balance between exploration and
exploitation, which can lead to improved schedules by optimizing resource utilization and minimizing execution time.
However, a very rapid decrease in @ might restrict exploration too early, potentially limiting the discovery of diverse
solutions.

5. Performance evaluation

This section begins with a detailed overview of the workflow models utilized in the study. It thoroughly describes
the setup of the simulation environment, including the configuration and parameters used, employing the
FogWorkflowSim Toolkit [13]. This toolkit is integral for simulating and analyzing the performance of various workflow
models in a fog computing environment. Following the initial setup, the section progresses to present the experimental
results derived from the simulations. It includes a comprehensive analysis of these results, highlighting key findings and
insights. The discussion delves into the implications of the results, comparing them with theoretical expectations and
previous studies, and assessing their impact on the field. This in-depth analysis aims to provide a clear understanding of
the performance and effectiveness of the workflow models in the given simulation environment.
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5.1 WORKFLOW MODELS

This research employs the established Montage workflow [28] from the field of astronomy to thoroughly assess
the effectiveness of the proposed method. The Montage workflow, described by the Pegasus framework [29], utilizes
XML files containing DAG representations as input for the simulations. These DAGs meticulously outline the structure
of the workflow, including the various tasks, their dependencies, run-times, and required data transfers. This detailed
representation allows for accurate simulation and evaluation of the workflow's performance in different computational
environments, such as fog computing. Fig. 5 illustrates the workflows in a graphical arrangement, clearly depicting the
interconnected tasks and their dependencies. This visual representation helps in understanding the workflow's execution
flow and the complex interactions between its components. By employing the Montage workflow, the research provides
a thorough assessment of the proposed method's effectiveness in handling real-world, data-intensive applications in
astronomy.

The Montage workflow simulates an astronomical application designed to generate custom mosaics of the sky by
utilizing several input images. This workflow is particularly relevant in the field of astronomy for its ability to create
detailed and accurate composite images from various astronomical surveys. It involves several stages, each contributing
to the overall goal of producing high-quality mosaics.
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Fig. 4 The flowchart of IPSO. Fig. 5 Structure of Montage workflow.

5.2 Simulation environment

The FogWorkflowSim simulator is run using the Eclipse Java IDE. Simulations are performed on a computer
system with a 64-bit Windows 10 operating system, an Intel(R) Core (TM) i7-M 640 @ 2.80 GHz processor, and 6 GB
of RAM. Each algorithm is executed with 20 particles.

In IPSO, the learning factors C1 and C2 are set to 2, with the initial and final inertia weights (wbegin and wend)
set at 0.8 and 0.3, respectively. To assess average performance, each workflow is simulated 10 times. For PSO, the inertia
weight is set to 1, with learning factors of 2 for both C1 and C2. The simulation environment consists of ten cloud VMs,
six fog VMs, and one end device. The specific characteristics of each server in the three-layer 10T-fog-cloud architecture,
along with detailed parameter configurations, are provided in Table 1.

Table 1 loT-cloud-fog environment parameter setting [23].

Parameters End device Fog VM Cloud VM
Processing Rate (MIPS) 500 1000 2000
Task execution Cost (3$) 0 0.48 0.96
Communication Cost ($) 0 0.01 0.02

Working Power (MW) 200 700 1700
Idle Power (MW) 50 200 1200
Uplink Bandwidth (Mbps) 800 500 300
Downlink Bandwidth (Mbps) 1000 800 500
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5.3 Simulation results

The performance of the IPSO algorithm is evaluated in comparison to the standard PSO [10] under identical
simulated conditions to ensure a fair assessment. The graph in Fig. 6 illustrates the makespan (completion time) for both
IPSO and PSO algorithms when applied to the Montage workflow. The x-axis represents the number of tasks in the
workflow, ranging from 100 to 500. The y-axis shows the makespan. This figure likely compares how the execution time
of these algorithms changes as the size of the workflow increases.

The IPSO algorithm consistently demonstrates superiority over PSO in handling scientific workflows of varying
sizes. This is evident in Fig. 6, where IPSO achieves significantly lower makespan (completion time) compared to PSO
for all evaluated workflow sizes. When processing 100 tasks, IPSO reduces makespan by an impressive 9.74%. This
advantage becomes even more pronounced with larger workflows, reaching reductions of 17.47%, 12.84%, 11.17%, and
15.11% for 200, 300, 400, and 500 tasks, respectively. These findings clearly illustrate the effectiveness of IPSO in
optimizing scientific workflow execution compared to PSO.

The average energy consumption is displayed in Fig. 7. The number of tasks in the workflow is shown by the x-
axis, which ranges from 100 to 500. This average energy consumption is displayed on the y-axis. This figure probably
compares how these algorithms' energy consumption varies with workflow size. For scientific processes of different sizes,
the IPSO algorithm regularly shows superiority over PSO in terms of energy consumption reduction. This can be seen in
Fig. 7, where for all process sizes examined, IPSO achieves noticeably lower energy consumption than PSO. IPSO
provides a remarkable 6.56% energy usage reduction when processing 100 tasks. With bigger workflows, this benefit
becomes even more noticeable, with savings of 18.78%, 14.39%, 16.85%, and 24.02% for 200, 300, 400, and 500 jobs,
respectively. These results imply that, in comparison to PSO, IPSO can greatly increase the energy efficiency of scientific
workflow execution.

The IPSO algorithm consistently outperforms PSO in terms of cost-effectiveness for scientific workflows of
varying sizes, as evidenced by Fig. 8. IPSO achieves a significant reduction in total cost compared to PSO across all
evaluated workflow sizes. When processing 100 tasks, and 200 tasks, IPSO offers a notable 3.54%, and 5.24% cost
reduction. This advantage becomes even more diminished with larger workflows, reaching savings of 0.71%, 0.83%, and
1.42% for 300, 400, and 500 tasks, respectively. These findings suggest that IPSO can substantially improve the cost
efficiency of scientific workflow execution compared to PSO.
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The IPSO time complexity for task scheduling in FogWorkflowSim is O (N~2 * G), where N is the number of tasks in
the workflow, and G is the number of iterations performed by the PSO algorithm. This complexity arises from the
following factors:

» Particle evaluation: Each particle needs to evaluate the fitness function for its current position. This involves
calculating the execution time, energy consumption, and other performance metrics for the task schedule
represented by the particle. The complexity of this evaluation depends on the specific implementation of the
fitness function but is generally linear in the number of tasks (O(N)).

» Particle update: The PSO algorithm updates each particle's position based on its velocity and the best
positions found so far. This involves simple arithmetic operations on vectors, which have a complexity of
O(N).

» Iteration loop: The PSO algorithm iterates over a fixed number of iterations (G) to refine the particle
positions. Therefore, the overall complexity is multiplied by G.

Therefore, the total complexity of PSO for task scheduling in FogWorkflowSim is O (N2 * G). This means that the
computational time of the algorithm increases quadratically with the number of tasks and linearly with the number of
iterations.

6. Conclusion

This study introduces a novel approach called Improved Particle Swarm Optimization (IPSO), designed
specifically for managing tasks and scheduling scientific workflows within a complex environment that integrates 10T
devices, cloud computing, and fog computing. The main reason for developing IPSO is to address a common issue with
traditional PSO: its tendency to converge on solutions too quickly. PSO's simplicity and ease of use have made it a popular
choice for scientific workflow scheduling; however, this study emphasizes the importance of handling real-time
applications where timing, total cost, and energy consumption are crucial. The innovation of IPSO lies in its ability to
adjust the inertia weight throughout the process. This allows IPSO to dynamically adapt its behavior, achieving a better
balance between the process of searching a wide range of the solution space to discover new and potentially better
solutions (exploration) and the process of focusing on refining promising solutions to find the best possible solution within
a specific region of the solution space (exploitation). This dynamic approach has the potential to improve both the speed
at which IPSO converges on a solution and the overall quality of the solution itself. IPSO surpasses all other methods in
minimizing the sum weighted objective function across the Montage workflow with varying numbers of tasks.
Additionally, it demonstrates competitive performance in metrics such as makespan, energy consumption, and cost.

In the future, our research aims to further refine IPSO and explore the application of a wider range of algorithms for
tackling task offloading and scheduling challenges. We plan to utilize a different workflow. Additionally, to enhance the
practicality of IPSO in real-world scenarios, we intend to incorporate constraints such as budget limitations, deadlines,
and resource limitations.
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