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Abstract. One of the potential 5G communication techniques that 

could enable the explosive growth of wireless communication 

services is beamforming, which helps make effective use of the 

existing frequency band and maintain signal quality. The 

beamforming technique aims to shape the radiation pattern to be 

targeted at the desired user and effectively suppress noise and 

interference. In this paper, beamforming optimization using the 

Hybrid Particle Swarm Optimization algorithm and Gravitational 

Search Algorithm technique (PSOGSA) using Linear Antenna 

Array (LAA) by suppressing the Sidelobe Level (SLL) of LAA is 

presented. The optimization process is introduced to find the 

optimum elements amplitude excitation, and positions in the 

array. PSOGSA optimization result is illustrated in comparison 

with other existing algorithms. Simulation results demonstrate the 

effectiveness of using PSOGSA, which has achieved the most 

suppressed SLL. The recommended approach can be applied to 

different antenna array designs and is successful in resolving 

beamforming optimization problems. 

Keywords: Antenna arrays, Beamforming, Hybrid algorithms, 

Optimization, Sidelobe level, Signal processing. 

1 Introduction 

In order to effectively use the available frequency band 

while providing signal coverage and raising signal data 

rates, it is important to keep up with the progress of 

wireless communication developments and the growing 

number of users. An emerging technology in 5G wireless 

communication systems is smart antennas.  It offers strong 

wireless network solutions that enhance communication 

services, regulate power, signal coverage, and multipath 

fading. Adaptive Beamforming (ABF), which improves 

reception and transmission while minimizing a number of 

millimeter wave band flaws like increased propagation 

losses and the vulnerability to obstruction blocking, is one 

of the most important and well-known parts of the 

development of recent technologies of antennas [1, 2]. The 

effectiveness of the conventional beamforming methods 

has been established. However, addressing the 

electromagnetic issue might lead to discontinuous and non-

differentiable zones. It is therefore of utmost importance to 

implement an appropriate optimization method that can 

protect computing resources and generate a global 

optimum. However, due to the increasing needs for 

wireless communication, smart antennas must place a 

higher emphasis on the usage of beamforming 

optimizations [3, 4].  

A wide variety of algorithms such as Runnge Kuta 

Optimizer (RUN) [5], Slim Mold Algorithm (SMA) [6]. 

Also Particle Swarm Optimization (PSO) that is widely 

used in optimization problems [7-11]. Harris Hauk 

Optimization (HHO) [12], Gravitational Search Algorithm 

(GSA) [13-15], and numerous initiatives have been 

launched in the area of research to improve antenna arrays 

using various methods [16]. There are numerous studies 

that use beamforming for linear antenna arrays (LAA). For 

example, antenna arrays pattern synthesis using Taguchi's 

optimization (Tag.) is presented in [17]. Cuckoo Search 

(CS) algorithm is used previously in the beamforming of 

different antenna arrays [18]. Genetic Algorithm (GA) is 

used in various optimization fields [19]. Differential 

Evolution (DE) [20], Biogeography-Based Optimization 

(BBO) [21], and Particle Swarm Optimization that is 

hybridized with Gravitational Search Algorithm (Hybrid 

PSOGSA) [22-23] are employed in many optimization 

problems. 

This work investigates PSOGSA-based LAA 

beamforming optimization. To identify the amplitude 

excitations and ideal placement of array elements, 

PSOGSA is employed. Compared to other methods, the 

optimization has used PSOGSA to produce suppressed 

Sidelobe Level (SLL) using a less number of antennas.  

This paper is arranged as follows: The introduction is 

in section 1. Section 2 illustrates the problem formulation, 

the design of LAA and the array factor, and the objective 

function. The PSOGSA method is illustrated in Section 3. 

Simulation results for the comparison of different 

algorithms is found in Section 4. The study's final 

conclusions are presented in Section 5. 

2 Problem formulation 

For antenna array design optimization, different array 

parameters can be controlled. Fig. 1 show the antenna array 

based on LAA topology using 2N array elements along the 

x-axis.  

During beamforming, the amplitude excitation and position 

for array element can be defined to minimize the SLL at 

certain directions. The following represents the antenna 

array factor: 



 

𝐀𝐫𝐫𝐚𝐲 𝐅𝐚𝐜𝐭𝐨𝐫 (𝜑) = 2 ∑ In cos(kxncos𝜑 + αn), N
n=1     (1) 

where In represents amplitude excitation; N is the array 

elements number; xn is the location of array elements, 𝛼n 

is the phase excitation of the array elements; and 𝜑 

represents the azimuth angle. The wave number is k.  

In this study, PSOGSA algorithm is employed to search the 

optimum antenna array parameters for achieving the most 

minimized SLL. The following equation must be used to 

minimize the SLL. For SLL suppression, the normalized 

fitness function is formulated as: 

𝐅𝐢𝐭𝐧𝐞𝐬𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 = min(max{20 log |
Array Factor(𝜑𝑆𝐿)

Array Factor(𝜑0)
|}),       (2) 

where 𝜑𝑆𝐿 represent the sidelobe limited area to be 

minimized and 𝐴rray Factor(𝜑0) describe the maximum 

array factor (0 dB) obtained at 𝜑0 = 900.  

3 Particle Swarm Optimization and 

Gravitational Search Algorithm (PSOGSA) 

Several heuristic optimization algorithms were introduced 

using hybridization methods where different algorithms are 

hybridized in different levels. PSOGSA is presented by 

Mirjalili in [22], which is a hybrid algorithm that is a merge 

of (GSA) and (PSO). PSOGSA were used to a CAA, 

demonstrating the possibility of antenna pattern synthesis 

[23]. In the following, we present a study and explanation of 

conventional PSO and GSA. 

 

A. Particle Swarm Optimization 

Through order to discover the optimum solution, PSO, an 

evolutionary computational technique that mimics the bird 

groups social behavior, uses a number of particles as 

candidate solutions that fly through the search space. The 

particles in PSO are considered the location at time 𝑡, 

velocity, and the best solution to update its location. PSO is 

described as below: 

𝑽𝒆𝒍𝒊(𝒕 + 𝟏) = 𝒅 × 𝑽𝒆𝒍𝒊(𝒕) + 𝑪𝟏 × 𝒓𝒂𝒏𝒅 × 𝒂𝒙𝒊(𝒕)  

                       +𝑪𝟐 × 𝒓𝒂𝒏𝒅 × (𝒈𝒃𝒆𝒔𝒕 − 𝒚𝒊(𝒕))          (3) 

𝒚𝒊(𝒕 + 𝟏) = 𝒚𝒊(𝒕) + 𝑽𝒆𝒍𝒊(𝒕 + 𝟏).                 (4) 

The equation variables are defined as follows: 

𝑉𝑒𝑙𝑖  is the particles velocity, 𝑦𝑖 represents particle i current 

location, 𝑑 is a constant, 𝑟𝑎𝑛𝑑 is a random number within 

[0,1], and 𝑔𝑏𝑒𝑠𝑡 is the best solution of the agents. 

The PSO initial step is to locate the particles randomly. 

Then, the particles velocities are calculated in (3). Then, the 

position of particles is calculated as (4). This process will 

continue until find the end solution. 

 

B. Gravitational Search Algorithm 

GSA draws its inspiration from Newton's law for gravity. 

The masses of agents in GSA are proportional to their value 

of objective function. The gravitational forces between all 

masses draw them towards one another. According to how 

far apart they are, the heavier masses pull the other masses. 

The GSA was mathematically described by the following. 
Suppose a system with N agents. All of the agents are 

initially placed around the search area. The gravitational 

forces exerted by agent j on agent i at a certain time t are 

found as below for all times: 

 

𝑭(𝒕) = 𝑮𝒓
𝑴𝒑𝒊(𝒕)×𝑴𝒂𝒋(𝒕)

𝑹𝒊𝒋(𝒕)+𝜺
(𝒙𝒋

𝒅(𝒕) − 𝒙𝒋
𝒅(𝒕)),              (5) 

Where 𝑀𝑎𝑗  is the gravitational mass for j, 𝑀𝑝𝑖  is the 

gravitational for i, gravitational constant is represented by 𝐺𝑟  

is at t, and 𝜀 is a constant. The Euclidian distance between i 

and j is defined by 𝑅𝑖𝑗. 𝐺𝑟  is calculated as below: 

𝐺𝑟 = 𝐺0 × 𝑒𝑥𝑝(−𝛼 ×
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥
)                          (6) 

 

Where 𝛼 is the descending factor, 𝐺0 describes the initial 

factor, 𝑖𝑡𝑒𝑟and 𝑚𝑎𝑥 represent the current iteration and the 

maximum iteration, respectively. 

𝑎𝑐𝑖  is the acceleration of 𝑖 at 𝑡 iteration, and is calculated as 

follows: 

 

𝑎𝑐𝑖(𝑡) =
𝑭𝒓(𝑡)

𝑀𝑖𝑖(𝑡)
,                            (7) 

where 𝑀𝑖𝑖  is the gravitational mass. 𝑭𝒓 𝑖𝑠 the force that 

implied to agent i is described by: 

𝑭𝒓(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗

𝑁

𝑗=1,𝑗≠𝑖
𝐹(𝑡),                   (8) 
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Fig. 1.  2N-elements LAA. 



Where 𝑟𝑎𝑛𝑑𝑗  random range is [0,1]. 𝐹 is the gravitational 

forces. 

C. The hybrid PSOGSA algorithm 

PSOGSA combines the features of GSA and PSO into a 

single hybrid algorithm. In order to optimize beamforming, 

the hybridization of these techniques is as below [22]: 

𝑉𝑒𝑙𝑖
′(𝑡 + 1) = 𝑤 × 𝑉𝑒𝑙𝑖

′(𝑡) + c1
′ × rand × 𝑎𝑐𝑖(𝑡)  

+ c2
′ × rand

× (gbest − yi
′(𝑡)),                  (9) 

where𝑉𝑒𝑙𝑖
′ is the velocity of the agent, 𝑤, c1

′  and c2
′  are  

constants, the best solution is 𝑔𝑏𝑒𝑠𝑡, 𝑟𝑎𝑛𝑑 is a random 

number between 0 and 1; yi
′ represents particle i current 

location where are updated by: 

yi
′(𝑡 + 1) = yi

′(𝑡) + 𝑉𝑒𝑙𝑖
′(𝑡 + 1).          (10) 

PSOGSA algorithm is shown in Fig. 2. The initialization of 

each agent is random. GSA parameters are determined. 

Every iteration should update the best solution. Finally, the 

positions of agents are updated through (9) and (10). When 

reaching the end criteria after updating the velocities and 

positions of particle, the function will stop. 

4 Simulation results 

LAA array pattern synthesis is done using PSOGSA to 

obtain the most suppressed SLL. The PSOGSA parameters 

used are as follows: number of iterations equal to 400, and 

search agents equal to 25. The simulation results are 

illustrated in comparing with other algorithms: PSO [9], 

GSA [14], CS [18], and BBO [21]. 

4.1 Optimization of Amplitude excitation(𝑰𝒏): 

 SLL suppression will be presented in this section for LAA 

by optimizing amplitude excitations (In) and phase is fixed 

to be (αn = 0) and elements spacing is constant (𝜆/2)  as 

mentioned in (2). Array factor in [18] will be as below: 

 

Array Factor (𝜑) = 2 ∑ 𝐼𝑛 cos((n − 0.5)πcos𝜑).𝑁
n=1  (11) 

The following cases are performed for 𝜑𝑆𝐿 = [0°, 76°] to 

suppress the SLL. The optimization lower and upper limits 

for amplitude excitation is within the range [0,1]. The 

comparison with other algorithms; BBO, CS, PSO, and GSA 

is presented in this section. 

Example 1 illustrates the design of LAA with 10 antenna 

elements. Table 1 and Fig. 3 presents the simulation results. 

PSOGSA provides SLL of -26.7dB, which is equal to SLL 

and FNBW for GSA. SLL for PSO is equal to -24.62dB, for 

CS is –24.44dB, and for BBO is -25.21dB. 

Example 2 illustrates the design of LAA with 24 antenna 

elements. The following cases are performed for 𝜑𝑆𝐿 =
[0°, 83°] to suppress the SLL. Table 2 and Fig. 4 presents 

Fig 2. PSOGSA algorithm flow chart. 

Meeting end 
criteria? 

Fitness function is 
evaluated 
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Initialization 

End 

Update 𝑉𝑖 using (9) 

Fig. 3. Amplitude optimization array factors of LAA (N=10) 

 

Table 1 Amplitude optimization SLL, FNBW, and 

optimum values of amplitude excitation of LAA (N=10)  

Method Amplitude excitation (In) Max 

SLL 

(dB) 

FNBW 

PSOGSA 0.9923, 0.8853, 0.6982, 

0.4755, 0.3374 

-26.7 32° 

GSA 0.8994, 0.8024, 0.6328, 

0.4309, 0.3058 

-26.7 32° 

PSO 1.0, 0.9010, 0.7255, 

0.5120, 0.4088 

-24.62 32° 

CS [14] 1.0, 0.9019, 0.7273, 

0.5153, 0.4157 

-24.44 30° 

BBO [13] 1.0, 0.8988, 0.7189, 

0.5025, 0.3862 

-25.21 31.4° 

 



the simulation results. PSOGSA provides SLL of -37.79dB, 

which is equal to SLL and FNBW for GSA. SLL for PSO is 

equal to -34.46dB, for CS is –34.5dB, and for BBO is -

37.14dB. 

 It can be concluded from examples 1 and 2 that there is no 

noticeable difference in SLL for PSOGSA compared with 

other methods in the case of 10 element array, while in the 

case of increasing the array element numbers to 24, 

compared to other techniques, PSOGSA yields better 

improvements.  

4.2 Optimization of elements positions(𝒙𝒏): 

   SLL suppression will be presented in this section for LAA 

by optimizing array element position(𝑥𝑛), and phase is fixed 

to be (αn = 0) and using uniform amplitude (In = 1) as 

mentioned in (2). Array factor in [18] will be as below: 

Array Factor(𝜑) = 2 ∑ cos(𝑘𝑥𝑛cos𝜑).   𝑁
n=1         (12) 

  
We have examined the two cases of using 10, and 24 array 

elements. In a linear array, antenna location is crucial 

because mutual coupling effects can result from placing 

antennas too close together, whereas grating lobes can result 

from placing antennas too far apart. The element spacing can 

changed through [0.5 𝜆, 1.5 𝜆].  

In example 3, the optimization is applied to LAA with 10 

antenna elements. Table 3 and Fig. 5 illustrate the 

optimization results. The following cases are performed for 

𝜑𝑆𝐿 = [0°, 78°] to suppress the SLL. PSOGSA provides 

SLL of -20.93dB. SLL for PSO is equal to -18.9dB, for 

GSA is –18.9dB. 

 Example 4 illustrates the design of LAA with 10 antenna 

elements. Table 4 and Fig. 6 presents the simulation results. 

The following cases are performed for 𝜑𝑆𝐿 = [0°, 78°] to 

Table 2 Amplitude optimization SLL, FNBW, and 

optimum values of amplitude excitation of LAA (N=24) 

Method Amplitude excitation (In) Max 

SLL 

(dB) 

FNBW 

PSOGSA 0.9839, 0.9834, 0.9088,  

0.8315, 0.7694, 0.6289, 

0.5559, 0.4254, 0.3240,  

0.2453, 0.1763, 0.1198 

-37.79 16° 

 

GSA 0.8264, 0.8240, 0.7915, 

 0.7096, 0.6555, 0.6074, 

0.4992, 0.4099, 0.3420,  

0.2716, 0.1991, 0.2073 

-34.02 

 

16° 

PSO 1.0, 0.9712, 0.9226,  

0.8591, 0.7812, 0.6807,  

0.5751, 0.4768, 0.3793,  

0.2878, 0.2020, 0.2167 

-34.46 15.6° 

CS [14] 1.0, 0.9773,0.9281,  

0.8573, 0.7753, 0.6854, 

0.5767, 0.4684, 0.3836,  

0.2749, 0.2227, 0.20 

-34.5 14.8° 

BBO [13] 1.0, 0.9796, 0.9011, 

0.8581,0.7375, 0.6103,  

0.5205, 0.4463, 0.3016, 

 0.2236, 0.1495, 0.0957 

-37.14 17.2° 

 

Fig. 5. Position optimization array factors of LAA 

(N=10) 

 

Fig. 4. Amplitude optimization array factors of LAA 

(N=24) 

Method Element position (xn) PSLL 

(dB) 

FNBW 

PSOGSA 0.4491, 1.4427, 2.4511, 

3.7226, 5.1891 

-20.93 22° 

GSA 0.4855, 1.0220, 1.9858, 

2.8838, 4.1815 

-18..9 22° 

PSO  0.2146, 0.5999, 1.0611, 

1.5870, 2.25 

-18.70 22° 

 

Table 3. Position optimization SLL, FNBW, and 

optimum values of element positions of LAA (N=10) 



suppress the SLL. PSOGSA provides SLL of -27.74dB. 

SLL for PSO is equal to -24.55dB, for GSA is –26.7dB. 

4.3 Optimization of elements positions (𝒙𝒏) and 

amplitude excitations(𝐈𝐧): 

   SLL suppression will be presented in this section for LAA 

by optimizing array both element position(𝑥𝑛) amplitude 

excitations (In) on the same time while the phase is fixed to 

be(αn = 0). Array factor in [18] will be as below: 

Array Factor(𝜑) = 2 ∑ In cos(𝑘𝑥𝑛cos𝜑).   𝑁
n=1         (12) 

We have examined the optimization in example 5 using 10 

array elements. Table 5 and Fig. 7 illustrate the optimization 

results. The following cases are performed for 𝜑𝑆𝐿 =
[0°, 81°] to suppress the SLL. PSOGSA provides SLL of -

33.64dB. SLL for PSO is equal to -32.21dB, for GSA is –

29.55dB. 

4.4 Results discussion: 

From the above analysis, it can be concluded that PSOGSA 

results the most minimized SLL over the other employed 

techniques in the case of amplitude excitation optimization 

and also in element position optimization in the case of 10 

and 24 element array. Additionally, it should be observed 

that all techniques minimize FNBW and minimize SLL 

when the number of array items is increased. From example 

5, the optimization of both amplitude and position of 

elements results SLL minimization while FNBW is more 

wide than in single element optimization. It can be 

concluded that is very effective to optimize more than one 

parameter in the antenna array.  

5 Conclusion 

This paper demonstrated beamforming optimization of 

antenna arrays by employing the hybrid optimization 

algorithm. The optimization process was done for LAA 

optimal pattern synthesis by targeting the optimum 

amplitude excitations and spacing between array elements 

to suppress the SLL to the most minimized level to reduce 

Fig. 6. Position optimization array factors of LAA (N=24) 

 
Table 4.  Position optimization SLL, FNBW, and 

optimum values of element positions of LAA (N=24) 

Method Element position (xn) PSLL 

(dB) 

FNBW 

PSOGSA 0.4393, 0.5142,1.4782, 

1.3629, 2.2165,2.9571, 

2.9155,4.1375,4.3447, 

5.4059,6.3278, 7.6418 

-27.74  20° 

GSA 0.3997,0.6369, 1.4249, 

1.9090, 2.3104, 3.3377, 

3.4260, 4.4633, 5.1102, 

6.0487, 7.1850, 8.5956 

-26.7  20° 

PSO 0.3577, 1.1489, 1.9750, 

2.7863, 3.5446, 4.3750,  

5.3146, 6.2584, 7.1933, 

8.4507, 9.8986, 11.4673 

-24.55 20° 

 

Method  Amplitude (𝐈𝐧)/ 
Position (𝒙𝒏) 

SLL 

(dB) 

FNBW  

 
PSOGSA 

A 1.0000, 0.6012, 0.5839, 

0.4772, 0.2265/ 

-32.83 30° 

D 0.4948, 1.4561, 2.7155, 

4.2045, 5.7045 

 

GSA 

A 0.6287, 0.8757, 0.8873, 

0.6858, 0.3690/ 

-29.55 

 

30° 

D 0.3161, 0.9510, 2.1160, 

3.4895, 4.9367 

A 0.1610, 0.3138, 0.8892, 

0.8750, 0.5472/ 

-32.21 `30° 

PSO 

 

D 0.5913, 1.8039, 3.0780, 

4.4035, 5.7563 

  

 

Table 5. Position and amplitude optimization SLL, FNBW, 

and optimum values of element positions of LAA (N=10) 

Fig. 7. Position and amplitude optimization array factors 

of LAA (N=10) 

 



signal interference. Other current algorithms are used to 

compare the results of the beamforming optimization. The 

simulation results demonstrate that PSOGSA beamforming 

of LAA is better to other approaches because it 

significantly reduces SLL. This demonstrates emphatically 

how effective PSOGSA is and how it may be used to 

address various beamforming optimization issues. Other 

antenna array shapes for beamforming applications can 

also be synthesized using it. 
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